Title: Analysis of C-terminally substituted tachykinin-like peptide agonists by means of aequorin-based luminescent assays for human and insect neurokinin receptors
Authors: Torfs, Herbert ×
Detheux, M
Oonk, HB
Akerman, KE
Poels, Jeroen
Van Loy, Tom
De Loof, Arnold
Vassart, G
Parmentier, M
Vanden Broeck, Jozef #
Issue Date: May-2002
Publisher: Pergamon-elsevier science ltd
Series Title: Biochemical Pharmacology vol:63 issue:9 pages:1675-1682
Abstract: Aequorin-based assays for stable fly, Stomoxys calcitrans, (STKR) and human (neurokinin receptor 1 (NK1), neurokinin receptor 2 (NX2)) neurokinin-like receptors were employed to investigate the impact of a C-terminal amino acid exchange in synthetic vertebrate ('FXGLMa') and invertebrate ('FX(1)GX(2)Ra') tachykinin-like peptides. C-terminally (Arg to Met) substituted analogs of the insect tachykinin-related peptide, Lom-TK I, displayed increased agonistic potencies in luminescent assays for human NK1 and NK2 receptors, whereas they showed reduced potencies in the STKR-assay. The opposite effects were observed when C-terminally (Met to Arg) substituted analogs of substance P were analysed. These substance P analogs proved to be very potent STKR-agonists, being more potent than Loin-TKI. On the other hand, Loin-TK-LMa, was shown to be a very potent NKI-agonist and was suggested to have more substance-P-mimetic than neurokinin-A-mimetic properties. NK1 and NK2 receptor agonists appeared to be more sensitive to changes at the penultimate amino acid position than STKR-agonists. This is also reflected in the sequence conservation that is observed in the naturally occurring tachykinin subgroups ('FXGLMa' vs. 'FX(1)GX(2)Ra'). The differential Arg-Met preference appears to be a major coevolutionary change between insect and human peptide-receptor couples. With regard to the peptide agonists, this change can theoretically be based on a single point mutation. (C) 2002 Elsevier Science Inc. All rights reserved.
ISSN: 0006-2952
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Animal Physiology and Neurobiology Section - miscellaneous
Department of Biology - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Torfs et al._2002_Biochem Pharmacol_vol63_1675-1682.pdf Published 163KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science