This item still needs to be validated !
Title: Glucose-regulated gene expression maintaining the glucose-responsive state of beta-cells
Authors: Schuit, Frans
Flamez, D
De Vos, A
Pipeleers, D #
Issue Date: Dec-2002
Publisher: Amer diabetes assoc
Series Title: Diabetes vol:51 pages:S326-S332
Abstract: The mammalian beta-cell has particular properties that synthesize, store, and secrete insulin in quantities that are matched to the physiological demands of the organism. To achieve this task, beta-cells are regulated both acutely and chronically by the extracellular glucose concentration. Several in vivo and in vitro studies indicate that preservation of the glucose-responsive state of beta-cells is lost when the extracellular glucose concentration chronically deviates from the normal physiological condition. Experiments with the protein synthesis inhibitor cycloheximide suggest that the maintenance of the functional state of beta-cells depends on protein(s) with rapid turnover. Analysis of newly synthesized proteins via two-dimensional gel electrophoresis and high-density gene expression microarrays demonstrates that the glucose-dependent preservation of beta-cell function is correlated with glucose regulation of a large number of beta-cell genes. Two different microarray analyses of glucose regulation of the mRNA profile in beta-cells show that the sugar influences expression of multiple genes involved, in energy metabolism, the regulated insulin biosynthetic/secretory pathway, membrane transport, intracellular signaling, gene transcription, and protein synthesis/degradation. Functional analysis of some of these regulated gene clusters It has provided new evidence for the concept that cataplerosis, the conversion of mitochondrial metabolites into lipid intermediates, is a major, metabolic pathway that allows beta-cell activation independently of closure of ATP-sensitive potassium channels.
ISSN: 0012-1797
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biochemistry Section (Medicine) (-)
Gene Expression Unit
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science