Title: Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor
Authors: Ali, Asif ×
Christie, Paul T
Grigorieva, Irina V
Harding, Brian
Van Esch, Hilde
Ahmed, S Faisal
Bitner-Glindzicz, Maria
Blind, Eberhard
Bloch, Catherine
Christin, Patricia
Clayton, Peter
Gecz, Jozef
Gilbert-Dussardier, Brigitte
Guillen-Navarro, Encarna
Hackett, Anna
Halac, Isil
Hendy, Geoffrey N
Lalloo, Fiona
Mache, Christoph J
Mughal, Zulf
Ong, Albert C M
Rinat, Choni
Shaw, Nicholas
Smithson, Sarah F
Tolmie, John
Weill, Jacques
Nesbit, M Andrew
Thakker, Rajesh V #
Issue Date: 6-Feb-2007
Publisher: IRL Press
Series Title: Human Molecular Genetics vol:16 issue:3 pages:265-275
Abstract: The hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome is an autosomal dominant disorder caused by mutations of the dual zinc finger transcription factor, GATA3. We investigated 21 HDR probands and 14 patients with isolated hypoparathyroidism for GATA3 abnormalities. Thirteen different heterozygous germline mutations were identified in patients with HDR. These consisted of three nonsense mutations, six frameshifting deletions, two frameshifting insertions, one missense (Leu348Arg) mutation and one acceptor splice site mutation. The splice site mutation was demonstrated to cause a pre-mRNA processing abnormality leading to the use of an alternative acceptor site 8 bp downstream of the normal site, resulting in a frameshift and prematurely terminated protein. Electrophoretic mobility shift assays (EMSAs) revealed three classes of GATA3 mutations: those that lead to a loss of DNA binding which represent over 90% of all mutations, and involved a loss of the carboxy-terminal zinc finger; those that resulted in a reduced DNA-binding affinity; and those (e.g. Leu348Arg) that did not alter DNA binding or the affinity but likely altered the conformational change that occurs during binding in the DNA major groove as predicted by a three-dimensional modeling. These results elucidate further the molecular mechanisms underlying the altered functions of mutants of this zinc finger transcription factor and their role in causing this developmental anomaly. No mutations were identified in patients with isolated hypoparathyroidism, thereby indicating that GATA3 abnormalities are more likely to result in two or more of the phenotypic features of the HDR syndrome and not in one, such as isolated hypoparathyroidism.
ISSN: 0964-6906
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Clinical Genetics Section (-)
Department of Human Genetics - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science