Title: Morphometric analysis of hypoxia-induced synaptic activity in intrapulmonary neuroepithelial bodies
Authors: Lauweryns, J M ×
Van Lommel, Alfons #
Issue Date: 27-Dec-1982
Series Title: Cell and tissue research vol:226 issue:1 pages:201-14
Abstract: A morphometric analysis has demonstrated ultrastructural changes induced by hypoxia in the epithelial cells and the intracorpuscular nerve endings of the presumed chemoreceptive intrapulmonary neuroepithelial bodies (NEB) of neonatal rabbits. Acute hypoxia stimulates an exocytosis of epithelial dense-core vesicles (DCV) at the level of the morphologically afferent or sensory (type 1 a) intracorpuscular nerve endings of the NEB. Assuming the epithelial cells to be chemoreceptive, this phenomenon could represent a transduction of sensory stimuli. In the morphologically efferent or motor (type 2 and type 1b) intracorpuscular nerve endings of the NEB, acute hypoxia causes a depletion of synaptic vesicles and an increase in the amount of membrane-bounded cisternae and multivesicular bodies, suggestive of an enhanced synaptic activity of these nerve endings. It is proposed that the chemoreceptor cells could thus in turn be modulated centrifugally by their efferent-like intracorpuscular nerve endings. It has been proposed in our earlier studies that the NEB probably are intrapulmonary chemoreceptors with local secretory activities, reacting to the composition of the inhaled air. By the release of serotonin and peptide substances they may produce a local vasoconstriction in hypoxically aerated lung areas, enabling an intrapulmonary regulation of the V/Q ratio. The present study provides evidence that, in addition to this local effect, NEB could generate centripetal nerve impulses via exocytosis of epithelial DCV at the afferent-like intracorpuscular nerve endings. At the same time they could be modulated by the CNS via their efferent-like intracorpuscular nerve endings.
ISSN: 0302-766X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Cell & Tissue Research
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.