Title: Study of electric and magnetic field fluctuations from lower hybrid drift instability waves in the terrestrial magnetotail with the fully kinetic, semi-implicit, adaptive multi level multi domain method
Authors: Innocenti, Maria Elena ×
Norgren, C
Newman, D
Goldman, M
Markidis, S
Lapenta, Giovanni #
Issue Date: 2016
Publisher: American Institute of Physics
Series Title: Physics of Plasmas vol:23 issue:5 pages:052902-052924
Abstract: The newly developed fully kinetic, semi-implicit, adaptive multi-level multi-domain (MLMD) method is used to simulate, at realistic mass ratio, the development of the lower hybrid drift instability (LHDI) in the terrestrial magnetotail over a large wavenumber range and at a low computa- tional cost. The power spectra of the perpendicular electric field and of the fluctuations of the parallel magnetic field are studied at wavenumbers and times that allow to appreciate the onset of the electrostatic and electromagnetic LHDI branches and of the kink instability. The coupling between electric and magnetic field fluctuations observed by Norgren et al. [“Lower hybrid drift waves: Space observations,” Phys. Rev. Lett. 109, 055001 (2012)] for high wavenumber LHDI waves in the terrestrial magnetotail is verified. In the MLMD simulations presented, a domain (“coarse grid”) is simulated with low resolution. A small fraction of the entire domain is then simu- lated with higher resolution also (“refined grid”) to capture smaller scale, higher frequency proc- esses. Initially, the MLMD method is validated for LHDI simulations. MLMD simulations with different levels of grid refinement are validated against the standard semi-implicit particle in cell simulations of domains corresponding to both the coarse and the refined grid. Precious information regarding the applicability of the MLMD method to turbulence simulations is derived. The power spectra of MLMD simulations done with different levels of refinements are then compared. They consistently show a break in the magnetic field spectra at k_{\perp} di \sim 30, with di the ion skin depth and k_{\perp} the perpendicular wavenumber. The break is observed at early simulated times, \Omega_{ci}t < 6, with \Omega_{ci}t the ion cyclotron frequency. It is due to the initial decoupling of electric and magnetic field fluctuations at intermediate and low wavenumbers, before the development of the electromagnetic LHDI branch. Evidence of coupling between electric and magnetic field fluctuations in the wave- number range where the fast and slow LHDI branches develop is then provided for a cluster mag- netotail crossing. Published by AIP Publishing. []
ISSN: 1070-664X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Plasma-astrophysics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
turbulence_Rev2.pdf Published 7866KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science