Title: Qualitative spatial reasoning for soccer pass prediction
Authors: Vercruyssen, Vincent
De Raedt, Luc
Davis, Jesse
Issue Date: 19-Sep-2016
Conference: Machine Learning and Data Mining for Sports Analytics ECML/PKDD 2016 workshop location:Riva del Garda date:19 September 2016
Article number: 8
Abstract: Given the advances in camera-based tracking systems, many soccer teams are able to record data about the players' position during a game. Analysing these data is challenging, since they are fine-grained, contain implicit relational information between players, and contain the dynamics of the game. We propose the use of qualitative spatial reasoning techniques to address these challenges, and test our approach by learning a model for pass prediction over a real-world soccer dataset. Experimental evaluation shows that our approach is capable of learning meaningful models. Since we employ an inductive logic programming system to learn the model, it has the added benefit of producing interpretable rules.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Informatics Section

Files in This Item:
File Description Status SizeFormat
manuscript.pdf Published 2364KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.