ITEM METADATA RECORD
Title: Dynamical networks in psychology: More than a pretty picture?
Other Titles: Dynamische netwerken in de psychologie: Meer dan een mooi plaatje?
Authors: Bringmann, Laura Francina
Issue Date: 7-Oct-2016
Abstract: In this thesis, we provide dierent perspectives on dynamical networks in psychology. The main
technique used here to infer networks is the multilevel vector autoregressive (VAR) model. In a
VAR model, the structure of the time-dependency within and between variables is explicitly modeled
through a set of regression equations. Using a multilevel extension of a VAR model allows one to
study the dynamics both within an individual as well as at group level.
The multilevel VAR model is further introduced in Chapter 2. In this study, longitudinal emotion
data from individuals with residual depressive symptoms were examined. Besides visualization of the
inferred networks, we also show how network structures can be further studied with network analyses,
such as centrality techniques.
Chapter 3 focuses on individual networks estimated with a multilevel VAR model. In this chapter,
the main goal is to study connectivity of individual emotion networks and their relation to neuroticism.
The results suggest that individuals with high levels of neuroticism have a denser emotion network
compared with their less neurotic peers.
In Chapter 4, we estimate the network of symptom dynamics that characterizes the Beck Depression
Inventory-II (BDI-II), based on repeated administrations of the questionnaire to a group of
depressed individuals who participated in a treatment study. Since the BDI-II symptoms decreased
during treatment, the means changed, indicating changing dynamics. To account for this change in
dynamics a linear trend was included in the multilevel VAR model. Beyond visualization, we conduct
several network analyses, such as centrality and cluster analyses.
Chapter 5 lays the foundation for studying time-varying networks in psychology. Networks are
likely to change over time, due to for example therapy (see Chapter 4). Up until now there has been no
easy way to detect changing dynamics. With a time varying autoregressive (TV-AR) model, changes
in means and temporal dynamics can be easily identied and modeled, and therefore the model has
signicant potential for studying changing dynamics in psychology.
Chapter 6 concerns psychological networks based on fMRI data. We use a new data driven technique,
ancestral graphs (AGs), and compare it with a standard hypothesis driven method, Structural
Equation Modeling (SEM). In contrast to VAR models, network analysis in both SEM and AG is
based on the replication of the condition-specic trials and not on time-dependencies in time series
data. As AGs can test explicitly the assumption of missing regions (nodes) in the network, it leads in
general to more accurate network structures than the SEM method. Although currently mainly used
in fMRI research, AGs could also be a promising solution for estimating networks in other elds of
psychology, such as emotion research.
In Chapter 7, a more general theoretical perspective on psychological science is taken. Network
techniques are highly interdisciplinary and analyses done in physics seem to translate to other elds,
such as social or psychological science. Still, in measurement debates, physical measurement is seen
as largely disconnected from psychological measurement. We argue instead that there are interesting
parallels and connections between the two. In the last chapter, the discussion, a critical examination
of the general topic of the thesis is presented, ultimately answering the question: Dynamical networks
in psychology - more than a pretty picture?
Publication status: published
KU Leuven publication type: TH
Appears in Collections:Quantitative Psychology and Individual Differences

Files in This Item:
File Status SizeFormat
Thesis_LFBringmann w voorkant.pdf Published 10634KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.