Journal of Chemical Physics
Author:
Keywords:
Science & Technology, Physical Sciences, Chemistry, Physical, Physics, Atomic, Molecular & Chemical, Chemistry, Physics, SURFACE MORPHOLOGIES, METHYL RADICALS, SCALE ANALYSIS, THIN-FILMS, GROWTH, CVD, MECHANISM, PLASMA, LENGTH, MISORIENTATION, 02 Physical Sciences, 03 Chemical Sciences, 09 Engineering, Chemical Physics, 34 Chemical sciences, 40 Engineering, 51 Physical sciences
Abstract:
A three-dimensional kinetic Monte Carlo model has been developed to simulate the chemical vapor deposition of a diamond (100) surface under conditions used to grow single-crystal diamond (SCD), microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films. The model includes adsorption of CHx (x = 0, 3) species, insertion of CHy (y = 0-2) into surface dimer bonds, etching/desorption of both transient adsorbed species and lattice sidewalls, lattice incorporation, and surface migration but not defect formation or renucleation processes. A value of ∼200 kJ mol(-1) for the activation Gibbs energy, ΔG(‡) etch, for etching an adsorbed CHx species reproduces the experimental growth rate accurately. SCD and MCD growths are dominated by migration and step-edge growth, whereas in NCD and UNCD growths, migration is less and species nucleate where they land. Etching of species from the lattice sidewalls has been modelled as a function of geometry and the number of bonded neighbors of each species. Choice of appropriate parameters for the relative decrease in etch rate as a function of number of neighbors allows flat-bottomed etch pits and/or sharp-pointed etch pits to be simulated, which resemble those seen when etching diamond in H2 or O2 atmospheres. Simulation of surface defects using unetchable, immobile species reproduces other observed growth phenomena, such as needles and hillocks. The critical nucleus for new layer growth is 2 adjacent surface carbons, irrespective of the growth regime. We conclude that twinning and formation of multiple grains rather than pristine single-crystals may be a result of misoriented growth islands merging, with each island forming a grain, rather than renucleation caused by an adsorbing defect species.