Title: Modification and stability of aromatic self-assembled monolayers upon irradiation with energetic particles
Authors: Cyganik, P ×
Vandeweert, Erno
Postawa, Z
Bastiaansen, J
Vervaecke, Frederik
Lievens, Peter
Silverans, Roger
Winograd, N #
Issue Date: Mar-2005
Publisher: Amer chemical soc
Series Title: Journal of Physical Chemistry B vol:109 issue:11 pages:5085-5094
Abstract: We have studied ion and electron irradiation of self-assembled monolayers (SAMs) of 2-(4'-methyl-biphenyl-4yl)-ethanethiol (BP2, CH3-C6H4C6H4CH2CH2-SH), phenyl mercaptan (PEM, C6H5CH2CH2-SH), and 4'-methyl-biphenyl-4-thiol (BP0, CH3-C6H4C6H4-SH) deposited on Au(111) substrates. Desorption of neutral particles from PEM/Au and BP2/Au was investigated using laser ionization in combination with mass spectrometry. The ion-induced damage of both BP2 and PEM SAMs is very efficient and interaction with a single ion leads to the modification of tens of molecules. This feature is the result of a desorption process caused by a chemical reaction initiated by an ion impact. Both for ions and electrons, experiments indicate that the possibility for scission of the Au-S bond strongly depends on the chemical nature of the SAM system. We attribute the possible origin of this effect to the orientation of the Au-S-C angle or adsorption sites of molecules. The analysis of electron-irradiated PEM/Au and BP2/Au, using ion-initiated laser probing, enabled measurements of the cross section for the electron-induced damage of the intact molecule or specific fragment. Analysis of electron-irradiated BP0/Au by using time-of-flight secondary ion mass spectrometry (TCF-SIMS) provides direct evidence for the quasi-polymerization process induced by electron irradiation.
ISSN: 1520-6106
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Solid State Physics and Magnetism Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science