ITEM METADATA RECORD
Title: Weakly first-order character of the nematic-isotropic phase transition in liquid crystals
Authors: Van Roie, Bert ×
Leys, Jan
Denolf, Katleen
Glorieux, Christ
Pitsi, Guido
Thoen, Jan #
Issue Date: Oct-2005
Publisher: American physical soc
Series Title: Physical Review E vol:72 issue:4 pages:041702
Abstract: The classification of phase transitions in first-order and second-order (or continuous) ones is widely used. The nematic-to-isotropic (NI) transition in liquid crystals is a weakly first-order transition, with only small discontinuities in enthalpy and specific volume at the transition which are not always easy to measure. On the other hand, fluctuation effects near the transition, typical for a continuous transition, are present because of the only weakly first-order character. In a recent paper [Phys. Rev. E 69, 022701 (2004)], it was concluded from the static dielectric permittivity in the isotropic phase near the NI transition that less polar mesogens (with little or no pretransitional effects) are characteristic for a first-order NI phase transition, whereas in the case of strongly polar ones (with large pretransitional effects) the NI transition is close to second order. In this paper, we address the question whether it is, indeed, possible to use these fluctuation effects in the isotropic phase to quantify the "strength" of a weakly first-order transition, i.e., how far it is from second order. Therefore, we measured the temperature dependence of the enthalpy near the NI transition of seven liquid crystals with adiabatic scanning calorimetry and compared the measured values of the latent heat with pretransitional effects in the dielectric constant and the specific heat capacity. The compounds used in the comparison are MBBA, 5CB, 8CB, 5NCS, 5CN, 8CHBT, and D7AB. From our analysis we find, contrary to the assertion in the above reference, no correlation between the strength of the NI transition of a given compound and the pretransitional effects observed, neither dielectrically, nor thermally.
ISSN: 1539-3755
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter and Biophysics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science