Title: Spectroscopic determination of photospheric parameters and chemical abundances of 6 K-type stars
Authors: Affer, L ×
Micela, G
Morel, Thierry
Sanz-Forcada, J
Favata, F #
Issue Date: Apr-2005
Publisher: EDP Sciences
Series Title: Astronomy & Astrophysics vol:433 issue:2 pages:647-U18
Abstract: High resolution, high - S/N- ratio optical spectra have been obtained for a sample of 6 K-type dwarf and subgiant stars, and have been analysed with three different LTE methods in order to derive detailed photospheric parameters and abundances and to compare the characteristics of analysis techniques. The results have been compared with the aim of determining the most robust method to perform complete spectroscopic analyses of K-type stars, and in this perspective the present work must be considered as a pilot study. In this context we have determined the abundance ratios with respect to iron of several elements. In the first method the photospheric parameters (T-eff, log g, and xi) and metal abundances are derived using measured equivalent widths and Kurucz LTE model atmospheres as input for the MOOG software code. The analysis proceeds in an iterative way, and relies on the excitation equilibrium of the Fe. lines for determining the effective temperature and microturbulence, and on the ionization equilibrium of the Fe I and Fe II lines for determining the surface gravity and the metallicity. The second method follows a similar approach, but discards the Fe. low excitation potential transitions ( which are potentially affected by non-LTE effects) from the initial line list, and relies on the B - V colour index to determine the temperature. The third method relies on the detailed fitting of the 6162 angstrom Ca I line to derive the surface gravity, using the same restricted line list as the second method. Methods 1 and 3 give consistent results for the program stars; in particular the comparison between the results obtained shows that the Fe. low-excitation potential transitions do not appear significantly affected by non-LTE effects ( at least for the subgiant stars), as suggested by the good agreement of the atmospheric parameters and chemical abundances derived. The second method leads to systematically lower T-eff and log g values with respect to the first one, and a similar trend is shown by the chemical abundances ( with the exception of the oxygen abundance). These differences, apart from residual non-LTE effects, may be a consequence of the colour-T-eff scale used. The alpha-elements have abundance ratios consistent with the solar values for all the program stars, as expected for "normal" disk stars. The first method appears to be the most reliable one, as it is self-consistent, it always leads to convergent solutions and the results obtained are in good agreement with previous determinations in the literature.
ISSN: 1432-0746
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Institute of Astronomy
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science