American Astronomical Society, AAS Meeting

Publication date: 2015-01-01
Volume: 225

American Astronomical Society, AAS Meeting

Author:

Taylor, JM
Azalee Bostroem, K ; Debes, JH ; Ely, J ; Hernandez, S ; Hodge, PE ; Jedrzejewski, RI ; Lindsay, K ; Lockwood, SA ; Massa, D ; Oliveira, CM ; Penton, SV ; Profitt, CR ; Roman-Duval, J ; Sahnow, DJ ; Sana, Hugues ; Sonnentrucker, P

Abstract:

Due to the effects of gain sag on flux on the COS FUV microchannel plate detector, the COS FUV spectra will be moved in February 2015 to a pristine location on the detector, from Lifetime Position 2 (LP2) to LP3. The spectra will be shifted in the cross-dispersion (XD) direction by -2.5", about -31 pixels, from the original LP1. In contrast, LP2 was shifted by +3.5", about 41 pixels, from LP1. By reducing the LP3-LP1 separation compared to the LP2-LP1 separation, we achieve maximal spectral resolution at LP3 while preserving more detector area for future lifetime positions. In the current version of the COS boxcar extraction algorithm, flux is summed within a box of fixed height that is larger than the PSF. Bad pixels located anywhere within the extraction box cause the entire column to be discarded. At the new LP3 position the current extraction box will overlap with LP1 regions of low gain (pixels which have lost >5% of their sensitivity). As a result, large portions of spectra will be discarded, even though these flagged pixels will be located in the wings of the profiles and contain a negligible fraction of the total source flux. To avoid unnecessarily discarding columns affected by such pixels, an algorithm is needed that can judge whether the effects of gain-sagged pixels on the extracted flux are significant. The "two-zone" solution adopted for pipeline use was tailored specifically for the COS FUV data characteristics: First, using a library of 1-D spectral centroid ("trace") locations, residual geometric distortions in the XD direction are removed. Next, 2-D template profiles are aligned with the observed spectral image. Encircled energy contours are calculated and an inner zone that contains 80% of the flux is defined, as well as an outer zone that contains 99% of the flux. With this approach, only pixels flagged as bad in the inner 80% zone will cause columns to be discarded while flagged pixels in the outer zones do not affect extraction. Finally, all good columns are summed in the XD direction to obtain a 1-D extracted spectrum. We present examples of the trace and profile libraries that are used in the two-zone extraction and compare the performance of the two-zone and boxcar algorithms.