Title: Quantum mechanical theory of the interference pattern of reference and object waves using scattering processes without and with recoil: Nuclear emission holography
Authors: Odeurs, Joseph
Coussement, Romain
Gheysen, Stijn #
Issue Date: Aug-2005
Publisher: American physical soc
Series Title: Physical Review B vol:72 pages:064119-1-064119-13
Abstract: The interference pattern eventually leading to nuclear emission holography results from the interference of radiation, produced by an excited source nucleus, that goes directly to a detector and radiation that is first resonantly scattered by neighboring identical nuclei in the ground state before going to the detector. The interference between these two processes gives rise to fluctuations in the radiated intensity as a function of the emission angle, giving information about the surrounding of the emitting nucleus. The quantum mechanical theory of the interference pattern using gamma-radiation is developed in frequency domain. It is shown that if the wavelengths of the relevant vibrational modes, which are excited due to the recoil of nuclei, are large compared with the relative distances of the absorber nuclei, with respect to the source nucleus, processes without as well as with recoil can give a contribution to the interference pattern. For nuclei that are situated at large distances from the source nucleus, only processes without recoil have to be considered.
ISSN: 1098-0121
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Nuclear and Radiation Physics Section
Development cooperation
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science