Title: pi phase-shift induced transparency of resonant gamma radiation
Authors: Hoy, GR ×
Odeurs, Joseph
Coussement, Romain #
Issue Date: Jun-2000
Publisher: Cambridge University Press
Series Title: Laser and Particle Beams vol:18 issue:2 pages:297-300
Abstract: The so-called gamma-echo effect has been observed experimentally and analyzed using the semiclassical optical theory. Here the effect is reinterpreted using a new 1D quantum mechanical model. This leads to a different interpretation of the effect as a pi phase-shift induced transparency. In the basic time-differential Mossbauer spectroscopic technique the forward-scattered recoil-free radiation is observed, in delayed coincidence, after passing through a nuclear-resonant absorber. The effect in question is produced most efficiently when the source of recoil-free radiation is moved abruptly causing a pi phase shift of the source radiation during its radiative lifetime. Using the 1D model the effect is seen to arise from the constructive interference between the source radiation at a later time, and the radiation coming from the absorber excited at an earlier time. The exact form of the source modulation and the nuclear-resonant thickness of the resonant absorber determines the shape of the time-differential resonant gamma ray transmission spectrum. Numerical results are given using the familiar Fe-57 recoil-free resonant transition. The rr phase-shift-induced transparency allows the resonant gamma radiation, incident on the resonant absorber, to be transmitted through the absorber without appreciable attenuation.
ISSN: 0263-0346
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Development cooperation
Nuclear and Radiation Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science