Title: kLog: A language for logical and relational learning with kernels (extended abstract)
Authors: Frasconi, Paolo
Costa, Fabrizio
De Raedt, Luc
De Grave, Kurt
Issue Date: Jul-2015
Host Document: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) pages:4183-4187
Conference: International Joint Conference on Artificial Intelligence (IJCAI-15) edition:2015 location:Buenos Aires, Argentina date:25-30 July 2015
Abstract: We introduce kLog, a novel language for kernel-based learning on expressive logical and relational representations.
kLog allows users to specify logical and relational learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, and logic programming. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space.
The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification.
An empirical evaluation shows that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at along with tutorials.
Description: This is a five-page abstract of the eponymous AIJ paper.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Informatics Section

Files in This Item:
File Description Status SizeFormat
ijcai15-kLog.pdfarticle preprint Accepted 468KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.