Title: Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification
Authors: Sheen, Campbell R ×
Kuss, Pia
Narisawa, Sonoko
Yadav, Manisha C
Nigro, Jessica
Wang, Wei
Chhea, T Nicole
Sergienko, Eduard A
Kapoor, Kapil
Jackson, Michael R
Hoylaerts, Marc
Pinkerton, Anthony B
O'Neill, W Charles
Millán, José Luis #
Issue Date: May-2015
Publisher: Blackwell Science, Inc.
Series Title: Journal of Bone and Mineral Research vol:30 issue:5 pages:824-36
Article number: 10.1002/jbmr.2420
Abstract: Medial vascular calcification (MVC) is a pathological phenomenon common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases, that causes vascular stiffening and can lead to heart failure. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre(+/-) ; Hprt(ALPL/Y) , or TNAP-OE) show extensive vascular calcification, high blood pressure, cardiac hypertrophy and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre(+/-) ; Hprt(ALPL/-) ) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target. This article is protected by copyright. All rights reserved.
ISSN: 0884-0431
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science