Title: Latent heat storage with tubular-encapsulated phase change materials (PCMs)
Authors: Zhang, Huili ×
Degrève, Jan
Caceres, Gustavo
Segal, R
Pitie, Fred
Baeyens, Jan #
Issue Date: 2014
Publisher: Pergamon Press
Series Title: Energy vol:76 issue:11 pages:66-72
Abstract: Heat capture and storage is important in both solar energy projects and in the recovery of waste heat from industrial processes. Whereas heat capture will mostly rely on the use of a heat carrier, the high efficiency heat storage needs to combine sensible and latent heat storage with phase change materials (PCMs) to provide a high energy density storage. The present paper briefly reviews energy developments and storage techniques, with special emphasis on thermal energy storage and the use of PCM. It thereafter illustrates first results obtained when encapsulating NaNO3/KNO3-PCM in an AISI 321 tube, as example of a storage application using a multi-tubular exchanger filled with PCM. To increase the effective thermal conductivity of the PCM, 2 inserts i.e. metallic foam and metallic sponge are also tested. Experimental discharging (cooling) rates are interpreted by both solving the unsteady-state conduction equation, and by using Comsol Multiphysics. Predictions and experimental temperature evolutions are in fair agreement, and the effect of the inserts is clearly reflected by the increased effective thermal conductivity of the insert-PCM composite. Application of Comsol to predict the mechanical behavior of the system, when melting and associated expansion increase the internal pressure, demonstrates that the pressure build-up is far below the Young's modulus of the AISI 321 encapsulation and that this shell will not crack.
ISSN: 0360-5442
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Bio- & Chemical Systems Technology, Reactor Engineering and Safety Section
Health Care and Chemistry Department - Geel Campus - TM K
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
1-s2.0-S0360544214003314-main.pdf Published 1193KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science