Title: In Situ IR Spectroscopic Investigation of Alumina ALD on Porous Silica Films: Thermal versus Plasma-Enhanced ALD
Authors: Levrau, Elisabeth
Van de Kerckhove, Kevin
Devloo-Casier, Kilian
Pulinthanathu Sree, Sreeprasanth
Martens, Johan
Detavernier, Christophe
Dendooven, Jolien # ×
Issue Date: 2014
Publisher: American Chemical Society
Series Title: Journal of Physical Chemistry C vol:118 issue:51 pages:29854-29859
Abstract: A novel in situ infrared (IR) approach is demonstrated for investigating and identifying ALD surface reactions during both the steady state and the initial growth regime. The unique combination of reflection−absorption IR spectroscopy in grazing incidence mode with a high surface area reflecting substrate allows for ALD process monitoring with an acceptable acquisition time and a high sensitivity in the entire mid-IR spectral region. Using a mesoporous silica film deposited on a reflecting platinum layer as substrate, the thermal and plasma-enhanced ALD processes of alumina with use of trimethylaluminum (TMA) are compared. Due to the high sensitivity of the method, the relative amount of surface hydroxyl groups added or removed during the process could be
determined versus the number of ALD half-cycles. These data reveal substrate-inhibited growth on the silica surface for the thermal process with use of TMA and water, as compared to direct growth for the plasma-based ALD process with use of TMA and O2 plasma. This different behavior could be linked to the formation of Si−CH3 surface groups after the first precursor pulse, as evidenced by the raw IR spectra. It is found that the oxygen radicals in the plasma can remove these surface groups during the next few ALD cycles, while the H2O molecules cannot, thus explaining the initial slower growth for the thermal process.
ISSN: 1932-7447
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Surface Chemistry and Catalysis
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
R2051.pdf Published 869KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science