ITEM METADATA RECORD
Title: DIAMONDS: A new Bayesian nested sampling tool Application to peak bagging of solar-like oscillations
Authors: Enrico, Enrico ×
De Ridder, Joris #
Issue Date: Nov-2014
Publisher: EDP Sciences
Series Title: Astronomy & Astrophysics vol:571
Article number: id.A71
Abstract: Thanks to the advent of the space-based missions CoRoT and NASA's Kepler, the asteroseismology of solar-like oscillations is now at the base of our understanding about stellar physics. The Kepler spacecraft, especially, is releasing excellent photometric observations of more than three years length in high duty cycle, which contain a large amount of information that has not yet been investigated.
Aims: To exploit the full potential of Kepler light curves, sophisticated and robust analysis tools are now required more than ever. Characterizing single stars with an unprecedented level of accuracy and subsequently analyzing stellar populations in detail are fundamental to further constrain stellar structure and evolutionary models.
Methods: We developed a new code, termed Diamonds, for Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional and multi-modal problems. A detailed description of the features implemented in the code is given with a focus on the novelties and differences with respect to other existing methods based on NSMC. Diamonds is then tested on the bright F8 V star KIC 9139163, a challenging target for peak-bagging analysis due to its large number of oscillation peaks observed, which are coupled to the blending that occurs between ℓ = 2,0 peaks, and the strong stellar background signal. We further strain the performance of the approach by adopting a 1147.5 days-long Kepler light curve, accounting for more than 840 000 data bins in the power spectrum of the star.
Results: The Diamonds code is able to provide robust results for the peak-bagging analysis of KIC 9139163, while preserving a considerable computational efficiency for identifying the solution at the same time. We test the detection of different astrophysical backgrounds in the star and provide a criterion based on the Bayesian evidence for assessing the peak significance of the detected oscillations in detail. We present results for 59 individual oscillation frequencies, amplitudes and linewidths and provide a detailed comparison to the existing values in the literature, from which significant deviations are found when a different background is used. Lastly, we successfully demonstrate an innovative approach to peak bagging that exploits the capability of Diamonds to sample multi-modal distributions, which is of great potential for possible future automatization of the analysis technique.
Software package available at the Diamonds code website: http://https://fys.kuleuven.be/ster/Software/Diamonds/
ISSN: 0004-6361
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Institute of Astronomy
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
aa24181-14.pdfoa article Published 12840KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science