Title: The rigid limit in special Kähler geometry - from K3-fibrations to special Riemann surfaces: a detailed case study
Authors: Billó, M ×
Denef, Frederik
Frè, P
Pesando, I
Troost, Walter
Van Proeyen, Antoine
Zanon, D #
Issue Date: Aug-1998
Publisher: Iop publishing ltd
Series Title: Classical and quantum gravity vol:15 issue:8 pages:2083-2152
Abstract: The limiting procedure of special Kahler manifolds to their rigid limit is studied for moduli spaces of Calabi-Yau manifolds in the neighbourhood of certain singularities. In two examples we consider all the periods in and around the rigid limit, identifying the non-trivial ones in the limit as Periods of a meromorphic form on the relevant Riemann surfaces. We show how the Kahler potential of the special Kahler manifold reduces to that of a rigid special Kahler manifold. We make extensive use of the structure of these Calabi-Yau manifolds as K3 fibrations, which is useful to obtain the periods even before the K3 degenerates to an ALE manifold in the limit. We study various methods to calculate the periods and their properties. The development of these methods is an important step to obtaining exact results from supergravity on Calabi-Yau manifolds.
ISSN: 0264-9381
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Theoretical Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science