Title: Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents
Authors: Dunning, GT
Glowacki, DR
Preston, TJ
Greaves, SJ
Greetham, GM
Clark, IP
Towrie, M
Harvey, JN
Orr-Ewing, AJ # ×
Issue Date: 30-Jan-2015
Publisher: American Association for the Advancement of Science
Series Title: Science vol:347 issue:6221 pages:530-533
Abstract: Solvent-solute interactions influence the mechanisms of chemical reactions in solution, but the response of the solvent is often slower than the reactive event. Here, we report that exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethane involve efficient energy flow to vibrational motion of the deuterium fluoride (DF) product that competes with dissipation of the energy to the solvent bath, despite strong solvent coupling. Transient infrared absorption spectroscopy and molecular dynamics simulations show that after DF forms its first hydrogen bond on a subpicosecond time scale, DF vibrational relaxation and further solvent restructuring occur over more than 10 picoseconds. Characteristic dynamics of gas-phase F-atom reactions with hydrogen- containing molecules persist in polar organic solvents, and the spectral evolution of the DF products serves as a probe of solvent reorganization induced by a chemical reaction.
ISSN: 0036-8075
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
F atom reaction paper revised.pdfFinal submitted manuscript Published 640KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science