Title: Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves
Authors: Fellah, Zine El Abidine ×
Depollier, C
Berger, S
Lauriks, Walter
Trompette, P
Chapelon, JY #
Issue Date: Nov-2003
Publisher: Acoustical soc amer amer inst physics
Series Title: Journal of the acoustical society of america vol:114 issue:5 pages:2561-2569
Abstract: An ultrasonic reflectivity method of evaluating the acoustic parameters of porous materials saturated by air (or any other gas) is discussed. The method is based on experimental detection of waves reflected at normal incidence by the first and second interface of the material. This method is based on a temporal model of direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame [Fellah et al., J. Acoust. Soc. Am. 113, 61-73 (2003)]. Generally, the conventional ultrasonic approach can be used to determine tortuosity, and viscous and thermal characteristic lengths via transmitted waves. Porosity cannot be estimated in transmitted mode because of its very weak sensitivity. First interface use of the reflected wave at oblique incidence leads to the determination of porosity and tortuosity [Fellah et al., J. Acoust. Soc. Am. 113, 2424-2433 (2003)] but this is not possible at normal incidence. Using experimental data of reflected waves by the first and second interface at normal incidence simultaneously leads to the determination of porosity, tortuosity, viscous and thermal characteristic lengths. As with the classic ultrasonic approach for characterizing porous material saturated with one gas, both characteristic lengths are estimated individually by assuming a given ratio between them. Tests are performed using weakly resistive industrial plastic foams. Experimental and numerical results, and prospects are discussed. (C) 2003 Acoustical Society of America.
ISSN: 0001-4966
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Soft Matter and Biophysics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science