Title: Non(anti)commutative superspace
Authors: Klemm, D ×
Penati, S
Tamassia, Laura #
Issue Date: Jul-2003
Publisher: Institute of Physics
Series Title: Classical and Quantum Gravity vol:20 issue:13 pages:2905-2916
Abstract: We investigate the most general non(anti)commutative geometry in N = 1 four-dimensional superspace, invariant under the classical (i.e., undeformed) supertranslation group. We find that a nontrivial non(anti)commutative superspace geometry compatible with supertranslations exists with non(anti)commutation parameters which may depend on the spinorial coordinates. The algebra is in general nonassociative. Imposing associativity introduces additional constraints which, however, allow for nontrivial commutation relations involving fermionic coordinates. We obtain explicitly the first three terms of a series expansion in the deformation parameter for a possible associative star-product. We also consider the case of N = 2 Euclidean superspace where the different conjugation relations among spinorial coordinates allow for a more general supergeometry.
ISSN: 0264-9381
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Theoretical Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science