Title: Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches
Authors: Baken, Stijn ×
Verbeeck, Mieke
Verheyen, Dries
Diels, Jan
Smolders, Erik #
Issue Date: 15-Mar-2015
Publisher: Pergamon Press
Series Title: Water Research vol:71 pages:160-170
Abstract: Redox reactions involving iron (Fe) strongly affect the mobility of phosphorus (P) and its migration from agricultural land to freshwater. We studied the transfer of P from groundwater to open drainage ditches in an area where, due to Fe(II) rich groundwater, the sediments of these ditches contain accumulated Fe oxyhydroxides. The average P concentrations in the groundwater feeding two out of three studied drainage ditches exceeded environmental limits for freshwaters by factors 11 and 16, but after passing through the Fe-rich sediments, the P concentrations in the ditch water were below these limits. In order to identify the processes which govern Fe and P mobility in these systems, we used diffusive equilibration in thin films (DET) to measure the vertical concentration profiles of P and Fe in the sediment pore water and in the ditchwater. The Fe concentrations in the sediment pore water ranged between 10 and 200 mg L−1 and exceeded those in the inflowing groundwater by approximately one order of magnitude, due to reductive dissolution of Fe oxyhydroxides in the sediment. The dissolved P concentrations only marginally increased between groundwater and sediment pore water. In the poorly mixed ditchwater, the dissolved Fe concentrations decreased towards the water surface due to oxidative precipitation of fresh Fe oxyhydroxides, and the P concentrations decreased more sharply than those of Fe. These observations support the view that the dynamics of Fe and P are governed by reduction reactions in the sediment and by oxidation reactions in the ditchwater. In the sediment, reductive dissolution of P-containing Fe oxyhydroxides causes more efficient solubilization of Fe than of P, likely because P is buffered by adsorption on residual Fe oxyhydroxides. Conversely, in the ditchwater, oxidative precipitation causes more efficient immobilization of P than of Fe, due to ferric phosphate formation. The combination of these processes yields a natural and highly efficient sink for P. It is concluded that, in Fe-rich systems, the fate of P at the sediment–water interface is determined by reduction and oxidation of Fe.
ISSN: 0043-1354
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division Soil and Water Management
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Fe-P open access.pdfOA article Published 876KbAdobe PDFView/Open Request a copy
Fe-P Supplementary Material-rev1.pdfSupplementary Material Published 923KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science