Title: The normal matrix model with a monomial potential, a vector equilibrium problem, and multiple orthogonal polynomials on a star
Authors: Kuijlaars, Arno ×
López García, Abey #
Issue Date: Feb-2015
Publisher: IOP Pub.
Series Title: Nonlinearity vol:28 issue:2 pages:347-406
Abstract: We investigate the asymptotic behaviour of a family of multiple orthogonal polynomials that is naturally linked with the normal matrix model with a monomial potential of arbitrary degree d + 1. The polynomials that we
investigate are multiple orthogonal with respect to a system of d analytic weights defined on a symmetric (d + 1)-star centred at the origin. In the first
part we analyse in detail a vector equilibrium problem involving a system of d interacting measures (μ_1, ..., μ_d ) supported on star-like sets in the plane.
We show that in the subcritical regime, the first component μ_1 of the solution to this problem is the asymptotic zero distribution of the multiple orthogonal polynomials. It also characterizes the domain where the eigenvalues in the
normal matrix model accumulate, in the sense that the Schwarz function associated with the boundary of this domain can be expressed explicitly in terms
of μ_1. The second part of the paper is devoted to the asymptotic analysis of the multiple orthogonal polynomials. The asymptotic results are obtained again in the subcritical regime, and they follow from the Deift/Zhou steepest descent analysis of a Riemann–Hilbert problem of size (d + 1) × (d + 1). The vector equilibrium problem and the Riemann–Hilbert problem that we investigate are
generalizations of those studied recently by Bleher–Kuijlaars in the case d = 2.
ISSN: 0951-7715
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Analysis Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Kuijlaars-Lopez-Nonlinearity2015.pdfOA article Published 629KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science