Title: The effect of different set-based visualizations on user exploration of recommendations
Authors: Verbert, Katrien
Parra, Denis
Brusilovksy, Peter
Issue Date: 2014
Host Document: Proceedings of the Joint Workshop on Interfaces and Human Decision Making in Recommender Systems pages:37-44
Conference: Joint Workshop on Interfaces and Human Decision Making in Recommender Systems date:6 October 2014
Abstract: When recommendations fail, trust in a recommender system often decreases, particularly when the system acts like a “black box”. To deal with this issue, it is important to support exploration of recommendations by explicitly exposing relationships that can provide explanations. As an example, a graph-based visualization can help to explain collaborative filtering results by representing relationships among items and users. In our work, we focus on the use of visualization techniques to support exploration of multiple relevance prospects - such as relationships between different recommendation methods, socially connected users and tags. More specifically, we researched how users explore relationships between such multiple relevance prospects with two set-based visualization techniques: a clustermap and a Venn diagram. A comparative analysis of user studies with these two approaches indicates that, although effectiveness of recommendations increases with the use of a clustermap, the approach is too complex for a non-technical audience. A Venn diagram representation is more intuitive and users are more likely to explore relationships that help them find relevant items.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Informatics Section

Files in This Item:
File Description Status SizeFormat
IntRS-cameraready.pdfOA article Published 1431KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.