Title: Biomechanical factors in atherosclerosis: mechanisms and clinical implications†
Authors: Kwak, Brenda R ×
Bäck, Magnus
Bochaton-Piallat, Marie-Luce
Caligiuri, Giuseppina
Daemen, Mat J A P
Davies, Peter F
Hoefer, Imo E
Holvoet, Paul
Jo, Hanjoong
Krams, Rob
Lehoux, Stephanie
Monaco, Claudia
Steffens, Sabine
Virmani, Renu
Weber, Christian
Wentzel, Jolanda J
Evans, Paul C #
Issue Date: Nov-2014
Publisher: Oxford University Press
Series Title: European Heart Journal vol:35 issue:43 pages:3013-3020
Abstract: Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced by a complex interaction between biological and mechanical factors-mechanical forces regulate the cellular and molecular composition of plaques and, conversely, the composition of plaques determines their ability to withstand mechanical load. A deeper understanding of these interactions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrating clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in atherosclerosis, we summarize the current 'state of the art' on the interface between mechanical forces and atherosclerotic plaque biology and identify potential clinical applications and key questions for future research.
ISSN: 0195-668X
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Atherosclerosis and Metabolism (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science