Title: Echography of young stars reveals their evolution
Authors: Zwintz, Konstanze ×
Fossati, L
Ryabchikova, T
Guenther, D
Aerts, Conny
Barnes, T. G
Themessl, N
Lorenz, D
Cameron, C
Kuschnig, R
Pollack-Drs, S
Moravveji, Ehsan
Baglin, A
Matthews, J. M
Moffat, A. F. J
Poretti, E
Rainer, M
Rucinski, S. M
Sasselov, D
Weiss, W. W #
Issue Date: Aug-2014
Series Title: SCIENCE vol:345 issue:6196 pages:550-553
Abstract: We demonstrate that a seismic analysis of stars in their earliest evolutionary phases is a powerful method with which to identify young stars and distinguish their evolutionary states. The early star that is born from the gravitational collapse of a molecular cloud reaches at some point sufficient temperature, mass, and luminosity to be detected. Accretion stops, and the pre-main sequence star that emerges is nearly fully convective and chemically homogeneous. It will continue to contract gravitationally until the density and temperature in the core are high enough to start nuclear burning of hydrogen. We show that there is a relationship for a sample of young stars between detected pulsation properties and their evolutionary status, illustrating the potential of asteroseismology for the early evolutionary phases.
ISSN: 0036-8075
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Institute of Astronomy
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science