ITEM METADATA RECORD
Title: Low-temperature destruction of carbon tetrachloride over lanthanide oxide-based catalysts: From destructive adsorption to a catalytic reaction cycle
Authors: Van der Avert, Pieter ×
Podkolzin, SG
Manoilova, O
De Winne, Hendrik
Weckhuysen, Bert #
Issue Date: 2004
Publisher: Wiley-v c h verlag gmbh
Series Title: Chemistry - a European Journal vol:10 issue:7 pages:1637-1646
Abstract: The catalytic destruction of carbon tetrachloride in the presence of steam, CCl4 + 2H(2)O-->4HCl + CO2, was investigated at 200-350degreesC over a series of lanthanide (La, Ce, Pr and Nd) and alkaline-earth metal (Mg, Ca, Sr and Ba) oxide-based catalysts with kinetic experiments, Raman spectroscopy, X-ray photoelectron spectroscopy, IR spectroscopy, X-ray diffraction, and DFT calculations. This new catalytic reaction was achieved by combining destructive adsorption of CCl4, on a basic oxide surface and concurrent dechlorination of the resulting partially chlorinated solid by steam. The combination of the two noncatalvtic reactions into a catalytic cycle provided a rare opportunity in heterogeneous catalysis for studying the nature and extent of surface participation in the overall reaction chemistry. The reaction is proposed to proceed over a terminal lattice oxygen site with stepwise donation of chlorine atoms from the hydrocarbon to the surface and formation of the gas-phase intermediate COCl2, which is readily readsorbed at the catalyst sur- face to form CO,. In a second step, the active catalyst surface is regenerated by steam with formation of gas-phase HCl. Depending on the reaction conditions, the catalytic material was found to transform dynamically from the metal oxide state to the metal oxide chloride or metal chloride state due to the bulk diffusion of oxygen and chlorine atoms. A catalyst obtained from a 10 wt % La2O3/Al2O3 precursor exhibited the highest destruction rate: 0.289 g CCl4 h(-1)g(-1) catalyst at 350degreesC, which is higher than that of any other reported catalyst system.
URI: 
ISSN: 0947-6539
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Centre for Surface Chemistry and Catalysis
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science