ITEM METADATA RECORD
Title: Carbon cycling of Lake Kivu (East Africa): net autotrophy in the epilimnion and emission of CO2 to the atmosphere sustained by geogenic inputs
Authors: Borges, AV ×
Morana, Cedric
Bouillon, Steven
Servais, P
Descy, JP
Darchambeau, F #
Issue Date: Sep-2014
Publisher: Public Library of Sciene
Series Title: PLoS One vol:9 issue:10
Article number: e109500
Abstract: We report organic and inorganic carbon distributions and fluxes in a large (>2000 km2) oligotrophic, tropical lake (Lake Kivu, East Africa), acquired during four field surveys, that captured the seasonal variations (March 2007–mid rainy season, September 2007–late dry season, June 2008–early dry season, and April 2009–late rainy season). The partial pressure of CO2 (pCO2) in surface waters of the main basin of Lake Kivu showed modest spatial (coefficient of variation between 3% and 6%), and seasonal variations with an amplitude of 163 ppm (between 579±23 ppm on average in March 2007 and 742±28 ppm on average in September 2007). The most prominent spatial feature of the pCO2 distribution was the very high pCO2 values in Kabuno Bay (a small sub-basin with little connection to the main lake) ranging between 11213 ppm and 14213 ppm (between 18 and 26 times higher than in the main basin). Surface waters of the main basin of Lake Kivu were a net source of CO2 to the atmosphere at an average rate of 10.8 mmol m−2 d−1, which is lower than the global average reported for freshwater, saline, and volcanic lakes. In Kabuno Bay, the CO2 emission to the atmosphere was on average 500.7 mmol m−2 d−1 (~46 times higher than in the main basin). Based on whole-lake mass balance of dissolved inorganic carbon (DIC) bulk concentrations and of its stable carbon isotope composition, we show that the epilimnion of Lake Kivu was net autotrophic. This is due to the modest river inputs of organic carbon owing to the small ratio of catchment area to lake surface area (2.15). The carbon budget implies that the CO2 emission to the atmosphere must be sustained by DIC inputs of geogenic origin from deep geothermal springs.
ISSN: 1932-6203
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Division Soil and Water Management
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Borges et al 2014 Carbon cycling of Lake Kivu net autotrophy and CO2 emission sustained by geogenic inputs.pdf Published 1233KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science