Title: Arithmetic motivic Poincaré series of toric varieties
Authors: Cobo Pablos, Maria Helena ×
Gonzàlez Pérez, Pedro Daniel #
Issue Date: 25-Apr-2013
Publisher: Mathematical Sciences Publishers
Series Title: Algebra & Number Theory vol:7 issue:2 pages:405-430
Abstract: The arithmetic motivic Poincaré series of a variety V defined over a field of characteristic zero is an invariant of singularities that was introduced by Denef and Loeser by analogy with the Serre–Oesterlé series in arithmetic geometry. They proved that this motivic series has a rational form that specializes to the Serre–Oesterlé series when V is defined over the integers. This invariant, which is known explicitly for a few classes of singularities, remains quite mysterious. In this paper, we study this motivic series when V is an affine toric variety. We obtain a formula for the rational form of this series in terms of the Newton polyhedra of the ideals of sums of combinations associated to the minimal system of generators of the semigroup of the toric variety. In particular, we explicitly deduce a finite set of candidate poles for this invariant.
ISSN: 1937-0652
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Algebra Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science