Title: Gap filling based on a quantile perturbation factor technique
Authors: Mora Serrano, Diego
Wyseure, Guido
Willems, Patrick
Issue Date: Aug-2014
Host Document: Proceedings of 11th International Conference on Hydroinformatics (HIC 2014) pages:1-8
Conference: 11th International Conference on Hydroinformatics edition:2014 location:New York, USA date:17-21 August 2014
Abstract: The presence of gaps in hydro-meteorological series is a common problem at the moment of analyzing data series. That is the case of the Ecuadorian hydrological data series, presenting eventual gaps of short term duration. The Paute River Basin, located in the Southern Ecuadorian Andes, is one of the most monitored basins in Ecuador, with 25 rainfall observed sites during the period of 1963 till 1990. However, its data base suffers of about 20% of
missing data.
For this research, two techniques were evaluated comparing their efficiency in the filling of missing gaps. The first one is based on multiple linear regressions, which applies a logarithmic transformation to the data and then converts the data to normalized standard variables. The second one is a new proposed technique based on quantile perturbation approach after a classical prior gap filling. It is used to shelter estimations for high and low intensities based on:
i. Identification of the station with the highest monthly correlation ii. Selection and ranking of the stations for which the correlation is significant, tested by the t-test, iii. Gap filling based on the stations with the highest significant correlation, and iv. the application of a correction factor to the filled value. For the evaluation, 3 un-interrupted daily rainfall data series were selected. Data series were deleted in a random way, simulating the 20% of missing data. The two filling techniques were applied separately. Finally, data series were evaluated by the different statistic criteria.
Results indicate that the proposed technique performs an efficient filling of missing gaps. It supports the definition of gaps corresponding to high or low events and avoids, in a certain range, the averaging of the series. However, it might lead to double counting of high/low
extremes events.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Hydraulics Section
Division Soil and Water Management

Files in This Item:
File Description Status SizeFormat
HIC2014-Diego.pdfpdf article Published 343KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.