ITEM METADATA RECORD
Title: Norovirus: Targets and tools in antiviral drug discovery
Authors: Rocha-Pereira, Joana ×
Neyts, Johan
Jochmans, Dirk #
Issue Date: Sep-2014
Publisher: Elsevier
Series Title: Biochemical Pharmacology vol:91 issue:1 pages:1-11
Article number: 10.1016/j.bcp.2014.05.021
Abstract: The development of antiviral strategies to treat or prevent norovirus infections is a pressing matter. Noroviruses are the number 1 cause of acute gastroenteritis, of foodborne illness, of sporadic gastroenteritis in all age groups and of severe acute gastroenteritis in children less than 5 years old seeking medical assistance [USA/CDC]. In developing countries, noroviruses are linked to significant mortality (∼200000 children <5 years old). Noroviruses are a major culprit for the closure of hospital wards, and associated with increased hospitalization and mortality among the elderly. Transplant patients have significant risk of acquiring persistent norovirus gastroenteritis. Control and prevention strategies are limited to the use of disinfectants and hand sanitizers, whose efficacy is frequently insufficient. Hence, there is an ample need for antiviral treatment and prophylaxis of norovirus infections. The fact that only a handful of inhibitors of norovirus replication have been reported can largely be attributable to the hampering inability to cultivate human noroviruses in cell culture. The Norwalk replicon-bearing cells and the murine norovirus-infected cell lines are the available models to assess in vitro antiviral activity of compounds. Human noroviruses have been shown to replicate (to some extent) in mice, calves, gnotobiotic pigs, and chimpanzees. Infection of interferon-deficient mice with the murine norovirus results in virus-induced diarrhea. Here we review recent developments in understanding which norovirus proteins or host cell factors may serve as targets for inhibition of viral replication. Given the recent advances, significant progress in the search for antiviral strategies against norovirus infections is expected in the upcoming years.
URI: 
ISSN: 0006-2952
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Virology and Chemotherapy (Rega Institute)
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2014132.pdf Published 396KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science