Title: Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice
Authors: Smulders, Stijn
Luyts, Katrien
Brabants, Gert
Van Landuyt, Kirsten
Kirschhock, Christine
Smolders, Erik
Golanski, Luana
Vanoirbeek, Jeroen
Hoet, Peter # ×
Issue Date: Sep-2014
Publisher: Academic Press
Series Title: Toxicological Sciences vol:141 issue:1 pages:132-40
Article number: kfu112
Abstract: The unique physical and chemical properties of nanomaterials have led to their increased use in many industrial applications, including as a paint additive. For example, titanium dioxide (TiO2) engineered nanoparticles (ENPs) have well-established anti-UV, self-cleaning, and air purification effects. Silver (Ag) ENPs are renowned for their anti-microbial capabilities and silicon dioxide (SiO2) ENPs are used as fire retardants and anti-scratch coatings. In this study, the toxic effects and biodistribution of three pristine ENPs (TiO2, Ag, and SiO2), three aged paints containing ENPs (TiO2, Ag, and SiO2) along with control paints without ENPs were compared. BALB/c mice were oropharyngeally aspirated with ENPs or paint particles (20 μg/aspiration) once a week for 5 weeks and sacrificed either 2 or 28 days post final aspiration treatment. A bronchoalveolar lavage was performed and systemic blood toxicity was evaluated to ascertain cell counts, induction of inflammatory cytokines, and key blood parameters. In addition, the lung, liver, kidney, spleen, and heart were harvested and metal concentrations were determined. Exposure to pristine ENPs caused subtle effects in the lungs and negligible alterations in the blood. The most pronounced toxic effects were observed after Ag ENPs exposure; an increased neutrophil count and a twofold increase in pro-inflammatory cytokine secretion (keratinocyte chemoattractant (KC) and interleukin-1ß (IL-1ß)) were identified. The paint containing TiO2 ENPs did not modify macrophage and neutrophil counts, but mildly induced KC and IL-1ß. The paints containing Ag or SiO2 did not show significant toxicity. Biodistribution experiments showed distribution of Ag and Si outside the lung after aspiration to respectively pristine Ag or SiO2 ENPs. In conclusion, we demonstrated that even though direct exposure to ENPs induced some toxic effects, once they were embedded in a complex paint matrix little to no adverse toxicological effects were identified.
ISSN: 1096-6080
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Environment and Health - miscellaneous
Centre for Surface Chemistry and Catalysis
Biomaterials - BIOMAT
Division Soil and Water Management
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
2014 Smulders et al Tox Sci.pdfOA article Published 1765KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science