ITEM METADATA RECORD
Title: Global machine learning for spatial ontology population
Authors: Kordjamshidi, Parisa ×
Moens, Marie-Francine #
Issue Date: Jan-2015
Publisher: Elsevier Science
Series Title: Journal of Web Semantics vol:30 pages:3-21
Abstract: Understanding spatial language is important in many applications such as geographical information systems, human computer interaction or text-to-scene conversion. Due to the challenges of designing spatial ontologies, the extraction of spatial information from natural language still has to be placed in a well-defined framework. In this work, we propose an ontology which bridges between cognitive-linguistic spatial concepts in natural language and multiple qualitative spatial representation and reasoning models.
To make a mapping between natural language and the spatial ontology, we propose a novel global machine learning framework for ontology population. In this framework we consider relational features and background knowledge which originates from both ontological relationships between the concepts and the structure of the spatial language. The advantage of the proposed global learning model is the scalability of the inference, and the flexibility for automatically describing text with arbitrary semantic labels that form a structured ontological representation of its content. The machine learning framework is evaluated with SemEval-2012 and SemEval-2013 data from the spatial role labeling task.
ISSN: 1570-8268
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Informatics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
webSemanticJournalPaperPreprint.pdfPrePrint Published 426KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science