Title: Selective Uptake of Rare Earths from Aqueous Solutions by EDTA-Functionalized Magnetic and Nonmagnetic Nanoparticles
Authors: Dupont, David
Brullot, Ward
Bloemen, Maarten
Verbiest, Thierry
Binnemans, Koen # ×
Issue Date: 2014
Publisher: American Chemical Society
Series Title: ACS Applied Materials and Interfaces vol:6 issue:7 pages:4980-4988
Abstract: Magnetic (Fe3O4) and nonmagnetic (SiO2 and TiO2) nanoparticles were decorated on their surface with N-[(3-trimethoxysilyl)propyl]ethylenediamine triacetic acid (TMS-EDTA). The aim was to investigate the influence of the substrate on the behavior of these immobilized metal coordinating groups. The nanoparticles functionalized with TMS-EDTA were used for the adsorption and separation of trivalent rare-earth ions from aqueous solutions. The general adsorption capacity of the nanoparticles was very high (100 to 400 mg/g) due to their large surface area. The heavy rare-earth ions are known to have a higher affinity for the coordinating groups than the light rare-earth ions but an additional difference in selectivity was observed between the different nanoparticles. The separation of pairs of rare-earth ions was found to be dependent on the substrate, namely the density of EDTA groups on the surface. The observation that sterical hindrance (or crowding) of immobilized ligands influences the selectivity could provide a new tool for the fine-tuning of the coordination ability of traditional chelating ligands.
ISSN: 1944-8244
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Design and Synthesis
Molecular Imaging and Photonics
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
310magneticNPs_supinfo.pdfSuppporting information Published 2834KbAdobe PDFView/Open
310magneticNPs.pdfMain article Published 1145KbAdobe PDFView/Open Request a copy
Postprint_MagneticNP.pdfpostprint Published 1146KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science