ITEM METADATA RECORD
Title: Prediction of effective genome size in metagenomic samples
Authors: Raes, Jeroen ×
Korbel, Jan O
Lercher, Martin J
von Mering, Christian
Bork, Peer #
Issue Date: 2007
Publisher: BioMed Central Ltd.
Series Title: Genome Biology vol:8 issue:1
Article number: R10
Abstract: We introduce a novel computational approach to predict effective genome size (EGS; a measure that includes multiple plasmid copies, inserted sequences, and associated phages and viruses) from short sequencing reads of environmental genomics (or metagenomics) projects. We observe considerable EGS differences between environments and link this with ecologic complexity as well as species composition (for instance, the presence of eukaryotes). For example, we estimate EGS in a complex, organism-dense farm soil sample at about 6.3 megabases (Mb) whereas that of the bacteria therein is only 4.7 Mb; for bacteria in a nutrient-poor, organism-sparse ocean surface water sample, EGS is as low as 1.6 Mb. The method also permits evaluation of completion status and assembly bias in single-genome sequencing projects.
URI: 
ISSN: 1465-6906
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science