Title: Computerized adaptive testing for the random weights linear logistic test model
Authors: Crabbe, Marjolein # ×
Vandebroek, Martina #
Issue Date: 2014
Publisher: Sage Publications, Inc.
Series Title: Applied Psychological Measurement vol:38 issue:6 pages:415-431
Abstract: This article discusses four-item selection rules to design efficient individualized tests for the random weights linear logistic test model (RWLLTM): minimum posterior-weighted D-error ðDBÞ,minimum expected posterior-weighted D-error ðEDBÞ,maximum expected Kullback–Leibler divergence between subsequent posteriors (KLP), and maximum mutual information (MUI). The RWLLTM decomposes test items into a set of subtasks or cognitive features and assumes individual-specific effects of the features on the difficulty of the items. The model extends and improves the well-known linear logistic test model in which feature effects are only estimated at the aggregate level. Simulations show that the efficiencies of the designs obtained with the different criteria appear to be equivalent. However, KLP and MUI are given preference over DB and EDB due to their lesser complexity, which significantly reduces the computational burden.
ISSN: 0146-6216
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Operations Research and Business Statistics (ORSTAT), Leuven
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
RWLLTM.pdfComputerized adaptive testing for the random weights linear logistic test model Published 346KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science