Title: Transforming growth factor-beta 1 increases internalization of basic fibroblast growth factor by smooth muscle cells: implication of cell-surface heparan sulphate proteoglycan endocytosis
Authors: Berrou, E ×
Quarck, Rozenn
Fontenay-Roupie, M
Lévy-Toledano, S
Tobelem, G
Bryckaert, M #
Issue Date: 16-Nov-1995
Series Title: The Biochemical journal vol:311 ( Pt 2) pages:393-9
Abstract: Basic fibroblast growth factor (bFGF) was internalized by smooth muscle cells (SMC) from pig aorta. Correlation between heparin inhibition of binding and late internalization (8 h) implicated low-affinity sites in bFGF internalization. Transforming growth factor-beta 1 (TGF-beta 1) induced a 38% increase in bFGF internalized between 4 and 8 h. While bFGF and/or TGF-beta 1 enhanced cell-surface proteoglycan synthesis, 35S-labelled proteoglycans of the extracellular matrix (ECM) were not affected. This might be explained by the different turnover rates displayed by the two populations of proteoglycans. Although bFGF and/or TGF-beta 1 induced a similar stimulation in cell-surface chondroitin sulphate/dermatan sulphate and heparan sulphate (HS) proteoglycan synthesis, only the turnover of HS proteoglycans was increased. Twice as much HS proteoglycan was internalized in the presence of TGF-beta 1 or bFGF. Furthermore, TGF-beta 1 induced a 43 +/- 12% increase in HS proteoglycan internalized in the presence of bFGF with a parallel 38% increase in bFGF internalization. Overall, the results indicated that bFGF bound to two HS proteoglycan populations. bFGF storage (70% of bFGF bound to SMC) was not affected by TGF-beta 1 under our conditions and involved ECM proteoglycans characterized by a low turnover. bFGF internalization up-regulated by TGF-beta 1 involved cell-surface HS proteoglycan characterized by a high turnover.
ISSN: 0264-6021
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Pneumology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science