ITEM METADATA RECORD
Title: Energy and material flow models of hydrogen production in the U.S. Chemical Industry
Authors: Ozalp, Nesrin # ×
Issue Date: 2008
Publisher: Pergamon Press
Series Title: International Journal of Hydrogen Energy vol:33 issue:19 pages:5020-5034
Abstract: This paper gives energy and material flow models of hydrogen production via steam reforming of methane in the U.S. Chemical Industry. Two energy flow models are used to describe the allocation of energy among process end-uses. First, an energy end-use model is given, which was created based on actual operating data. Next, a representative material flow model is given on a national scale based on federal data on merchant hydrogen production. The last step is the energy process-step model, which was developed based on the steps described in the material flow model. Finally, the energy process-step model results are cross checked with the values found in the energy end-use model to justify that the selected representative hydrogen production material flow model does characterize the overall picture of hydrogen generation in the U.S. Chemical Industry. Results show the energy allocation among process steps in the form of steam, fuel and electricity. The major federal database to construct energy flow models is published once in four years. During the course of this study, the most recent U.S. federal energy database available was for the year 1998. Currently, the most recent available U.S. federal energy database is given for the year 2002.
ISSN: 0360-3199
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Energy and material flow models of hydrogen production in the U.S. Chemical Industry.pdfEnergy and material flow models of hydrogen production in the U.S. Chemical Industry Published 259KbAdobe PDFView/Open

 


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science