ITEM METADATA RECORD
Title: Effect of camera-like aperture in quest for maintaining quasi-constant radiation inside a solar reactor
Authors: Ozalp, Nesrin ×
Toyama, Anthony
Jayakrishna, Devanuri
Rowshan, Reza
Al-Hamidi, Yasser #
Issue Date: 2011
Publisher: American Society of Mechanical Engineers
Series Title: Journal of Mechanical Design vol:133 issue:2 pages:021002-0210027
Abstract: Solar reactors can convert intermittent solar radiation into storable chemical energy in the form of fuels that are transportable. In order to use solar energy as a source of high temperature process heat in a solar reactor, incident radiation needs to be concentrated over a small surface area, the inlet of which is called the aperture. The image of the incoming solar radiation over the aperture can be approximated by a Gaussian distribution where the solar radiation inside the reactor varies by the peak value and aperture size. Due to the transient nature of solar energy, there is a critical need for proper control to maximize system efficiency under field conditions. The objective of this paper is to present numerically proven advantages of having a camera-like variable aperture, one that is sensitive to natural variations in solar flux, and having the ability to shrink or enlarge accordingly in order to maintain quasi-constant radiation inside the reactor. Since the internal temperature has a major impact on reactant to product conversion efficiency, by maintaining the temperature constant, process efficiency is kept high. By maintaining the internal temperature despite transient operating conditions, the system can maintain peak performance through a wider insolation range than fixed aperture systems. Our numerical results from optical, thermodynamic, and flow dynamic simulations led us to develop a computational two dimensional heat transfer distribution model inside the reactor in order to validate our optical results. The combined simulation results show that correctly varying the aperture diameter with respect to transient incoming solar flux densities facilitates the maintenance of quasi-constant temperature distributions inside the reactor.
ISSN: 1050-0472
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Effect of camera-like aperture in quest for maintaining quasi-constant radiation inside a solar reactor.pdfEffect of camera-like aperture in quest for maintaining quasi-constant radiation inside a solar reactor Published 710KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.