Title: Stochastic Uncertainty Quantification of the Conductivity in EEG Source Analysis by Using Polynomial Chaos Decomposition
Authors: Gaignaire, Roman ×
Crevecoeur, Guillaume
Dupre, Luc
Sabariego, Ruth
Dular, Patrick
Geuzaine, Christophe #
Issue Date: Aug-2010
Publisher: Published by the Institute of Electrical and Electronics Engineers for the Magnetics Group
Series Title: IEEE Transactions on Magnetics vol:46 issue:8 pages:3457-3460
Abstract: The electroencephalogram (EEG) is one of the techniques used for the non-invasive diagnosis of patients suffering from epilepsy. EEG source localization identifies the neural activity, starting from measured EEG. This numerical localization procedure has a resolution, which is difficult to determine due to uncertainties in the EEG forward models. More specifically, the conductivities of the brain and the skull in the head models are not precisely known. In this paper, we propose the use of a non-intrusive stochastic method based on a polynomial chaos decomposition for quantifying the possible errors introduced by the uncertain conductivities of the head tissues. The accuracy and computational advantages of this non-intrusive method for EEG source analysis is illustrated. Further, the method is validated by means of Monte Carlo simulations.
ISSN: 0018-9464
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Non-KU Leuven Association publications
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
10ieeetrmagv46n8_gaignaire_stochastic_eeg_postprint.pdfOA article Published 532KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science