Title: Preclinical evaluation of [(18)F]JNJ42259152 as a PET tracer for PDE10A
Authors: Celen, Sofie ×
Koole, Michel
Ooms, Maarten
De Angelis, M
Sannen, Ivan
Cornelis, Julie
Alcazar, J
Schmidt, M
Verbruggen, Alfons
Langlois, X
Van Laere, Koen
Andrés, J I
Bormans, Guy #
Issue Date: Nov-2013
Publisher: Academic Press
Series Title: NeuroImage vol:82 pages:13-22
Article number: 10.1016/j.neuroimage.2013.04.123
Abstract: Phosphodiesterase-10A (PDE10A) is implicated in several neuropsychiatric disorders involving basal ganglia neurotransmission, such as schizophrenia, obsessive-compulsive disorder and Huntington's disease. To confirm target engagement and exposure-occupancy relationships of clinical candidates for treatment, and to further explore the in vivo biology of PDE10A, non-invasive imaging using a specific PET ligand is warranted. Recently we have reported the in vivo evaluation of [(18)F]JNJ41510417 which showed specific binding to PDE10A in rat striatum, but with relatively slow kinetics. A chemically related derivative JNJ42259152 was found to have a similar in vivo occupancy, but lower lipophilicity and lower PDE10A in vitro inhibitory activity compared to JNJ41510417. (18)F-labeled JNJ42259152 was therefore evaluated as a potential PDE10A PET radiotracer. Baseline PET in rats and monkey showed specific retention in the PDE10A-rich striatum, and fast wash-out, with a good contrast to non-specific binding, in other brain regions. Pretreatment and chase experiments in rats with the selective PDE10A inhibitor MP-10 showed that tracer binding was specific and reversible. Absence of specific binding in PDE10A knock-out (KO) mice further confirmed PDE10A specificity. In vivo radiometabolite analysis using high performance liquid chromatography (HPLC) showed presence of polar radiometabolites in rat plasma and brain. In vivo imaging in rat and monkey further showed faster brain kinetics, and higher striatum-to-cerebellum ratios for [(18)F]JNJ42259152 compared to [(18)F]JNJ41510417. The arterial input function corrected for radiometabolites was determined in rats and basic kinetic modeling was established. For a 60-min acquisition time interval, striatal binding potential of the intact tracer referenced to the cerebellum showed good correlation with corresponding binding potential values of a Simplified Reference Tissue Model and referenced Logan Plot, the latter using a population averaged reference tissue-to-plasma clearance rate and offering the possibility to generate representative parametric binding potential images. In conclusion we can state that in vivo imaging in PDE10A KO mice, rats and monkey demonstrates that [(18)F]JNJ42259152 provides a PDE10A-specific signal in the striatum with good pharmacokinetic properties. Although presence of a polar radiometabolite in rat brain yielded a systematic but reproducible underestimation of the striatal BPND, a Logan reference tissue model approach using 60 min acquisition data is appropriate for quantification.
ISSN: 1053-8119
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Radiopharmaceutical Research
Nuclear Medicine & Molecular Imaging
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
1-s2.0-S1053811913004916-main.pdf Published 1003KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science