ITEM METADATA RECORD
Title: A data driven approach using Takagi-Sugeno models for computationally efficient lumped floodplain modeling
Authors: Wolfs, Vincent ×
Willems, Patrick #
Issue Date: 2013
Publisher: Elsevier
Series Title: Journal of Hydrology vol:503 pages:222-232
Abstract: Many applications in support of water management decisions require hydrodynamic models with limited calculation time, including real time control of river flooding, uncertainty and sensitivity analyses by Monte-Carlo simulations, and long term simulations in support of the statistical analysis of the model simulation results (e.g. flood frequency analysis). Several computationally efficient hydrodynamic models exist, but little attention is given to the modelling of floodplains. This paper presents a methodology that can emulate output from a full hydrodynamic model by predicting one or several levels in a floodplain, together with the flow rate between river and floodplain. The overtopping of the embankment is modelled
as an overflow at a weir. Adaptive neuro fuzzy inference systems (ANFIS) are exploited to cope with the varying factors affecting the flow. Different input sets and identification methods are considered in model construction. Because of the dual use of simplified physically based equations and data-driven techniques, the ANFIS consist of very few rules with a low number of input variables. A second calculation scheme can be followed for exceptionally large floods. The obtained nominal emulation model was tested for four floodplains along the river Dender in Belgium. Results show that the obtained models are accurate with low computational cost.
ISSN: 0022-1694
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Hydraulics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
Wolfs (JoH 2013).pdfpdf article Published 1606KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science