Title: A loosely coupled and distributed Bayesian framework for multi-context recognition in dynamic ubiquitous environments
Authors: Ramakrishnan, Arun
Preuveneers, Davy
Berbers, Yolande
Issue Date: 18-Dec-2013
Publisher: IEEE
Host Document: Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International Conference on Autonomic and Trusted Computing (UIC/ATC) pages:270-277
Conference: IEEE International Conference on Ubiquitous Intelligence and Computing edition:10 location:Vietri sul Mare, Italy date:18-20 December 2013
Abstract: Today’s ubiquitous environments are characterized by smart applications with variable context requirements on the
one hand and a dynamic availability of heterogeneous sensors
on the other hand. Currently, many existing systems pursue
a structured ad-hoc approach with rigid mappings between
the applications and the context sources, adversely affecting the performance of these applications when the availability of the context sources drops. Furthermore, such ad-hoc and tightly coupled approaches suffer from reduced flexibility when simultaneously handling multiple smart applications in dynamic environments characterized by a high sensor churn rate. We present a loosely coupled Bayesian-based learning framework that addresses these challenges by allowing dynamic many-to many relations between smart applications and context sources with support for recognizing diverse contexts more reliably in the presence of disappearing sensors. Our approach is able to lift these limitations by leveraging the availability of multiple co-occurring contexts and their conditional dependencies. On the one hand, the framework exhibits flexibility to dynamically add and remove contexts through autonomic learning of individual contexts appropriate for the spatially distributed ubiquitous infrastructures. On the other hand, it incorporates the advantages of multi-view learning by boot-strapping and fusing multiple heterogeneous context information streams. Our experimental evaluation using a personal assistant application demonstrates the performance and robustness of the proposed framework with
significant adaptability and resilience to missing data and partial observability.
Publication status: published
KU Leuven publication type: IC
Appears in Collections:Informatics Section

Files in This Item:
File Description Status SizeFormat
PID2991421.pdf Published 334KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science