Title: Cardiac three-dimensional rotational angiography can be performed with low radiation dose while preserving image quality
Authors: De Buck, Stijn ×
Alzand, Becker S N
Wielandts, Jean-Yves
Garweg, Christophe
Phlips, Thomas
Ector, Joris
Nuyens, Dieter
Heidbuchel, Hein #
Issue Date: Dec-2013
Publisher: W.B. Saunders
Series Title: Europace vol:15 issue:12 pages:1718-24
Abstract: AIMS: The effective radiation dose (ED) of three-dimensional rotational angiography (3DRA) is 5-8 mSv, leading to reticence on its use. We evaluated the potential of 3DRA with a reduced number of frames (RNF) and a reduced dose per frame.METHODS AND RESULTS: Three-dimensional rotational angiography was performed in 60 patients (52.5 ± 9.6 years, 16 females) referred for ablation in the right (RA; n = 10) and left atrium (LA; n = 50). In a simulation group (n = 20), the effect of dropping frames from a conventional 248 frames 3DRA LA acquisition was simulated. In a prospective group (n = 40), RNF 3DRA were acquired of LA (n = 30) and RA (n = 10) with 67 frames (0.24 Gy/frame) and 45 frames (0.12 μGy/frame), respectively. Accuracy was evaluated qualitatively and quantitatively. Effective radiation dose was determined by Monte Carlo simulation on every frame. In the simulation group, surface errors increased minimally and non-significantly when reducing frames from 248 to 124, 83, 62, 50, 42, and 31: 0.49 ± 0.51, 0.52 ± 0.46, 0.61 ± 0.49, 0.62 ± 0.47, 0.71 ± 0.48, and 0.81 ± 0.47 mm, respectively (Pearson coefficient 0.20). All 3D LA images were clinically useful, even with only 31 frames. In the prospective group, good or optimal 3D image quality was achieved in 80% of LA and all of RA reconstructions. These accurate models were obtained with ED of 2.6 ± 0.4 mSv for LA and 1.2 ± 0.5 mSv for RA.CONCLUSION: Three-dimensional rotational angiography is possible with a significant reduction in ED (to the level of prospectively gated cardiac computed X-ray tomography) without compromising image quality. Low-dose 3DRA could become the preferred online 3D imaging modality for pulmonary vein isolation and other anatomy-dependent ablations.
ISSN: 1099-5129
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Cardiology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science