Title: Predicting tryptic cleavage from proteomics data using decision tree ensembles
Authors: Fannes, Thomas ×
Vandemarliere, Elien
Schietgat, Leander
Degroeve, Sven
De Grave, Kurt
Martens, Lennart
Ramon, Jan #
Issue Date: 9-Dec-2013
Conference: Benelux Bioinformatics Conference edition:2013 location:Brussels, Belgium date:9-10 December 2013
Article number: 103
Abstract: Trypsin is the workhorse protease in mass spectrometry-based proteomics experiments and is used to digest proteins into more readily analyzable peptides. To identify these peptides after mass spectrometric analysis, the actual digestion has to be mimicked as faithfully as possible in silico. We introduce CP-DT (Cleavage Prediction with Decision Trees), an algorithm based on a decision tree ensemble that was learned on publicly available peptide identification data from the PRIDE repository. CP-DT is able to accurately predict tryptic cleavage: tests on three independent data sets show that CP-DT significantly outperforms the Keil rules that are currently used to predict tryptic cleavage. Moreover, the trees generated by CP-DT can make predictions efficiently and are interpretable by domain experts.
Description: This is a poster + abstract summarizing the eponymous paper in the Journal of Proteome Research.
Publication status: published
KU Leuven publication type: IMa
Appears in Collections:Informatics Section
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
BBC2013_trypsin_abstract.pdf1-page abstract Submitted 491KbAdobe PDFView/Open
bbc13_poster_trypsin.pdfposter Published 1430KbAdobe PDFView/Open


All items in Lirias are protected by copyright, with all rights reserved.