ITEM METADATA RECORD
Title: Binding of tissue-type plasminogen activator with human endothelial cell monolayers. Characterization of the high affinity interaction with plasminogen activator inhibitor-1
Authors: Russell, Me ×
Quertermous, T
Declerck, Paul
Collen, Desire
Haber, E
Homcy, Cj #
Issue Date: Feb-1990
Series Title: Journal of Biological Chemistry vol:265 issue:5 pages:2569-75
Abstract: The formation and release of covalent complexes between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) limits the application of equilibrium radioligand binding analysis to characterize the interaction between t-PA and human umbilical vein endothelial cell (HUVEC) monolayers. To avoid this difficulty, we used a recombinant mutant of t-PA, S478A rt-PA, in which alanine has been substituted for the active-site serine. Although the mutant is incapable of covalently reacting with PAI-1, 125I-labeled S478A rt-PA binding to HUVEC monolayers is specific and reversible and is characterized by a high affinity (Kd of 1.5 nM) and a large number of sites (1.5 x 10(6)/cell). This binding was shown to occur through noncovalent interaction with PAI-1 in the HUVEC monolayer by the fact that a monoclonal anti-PAI-1 antibody (MA-7D4) completely blocked S478A rt-PA binding. Two solution-phase assays with recombinant PAI-1 (rPAI-1) confirmed this noncovalent interaction: complexes between 125I-S478A rt-PA and rPAI-1 could be isolated by immunoprecipitation with anti-PAI-1 antibodies, and S478A rt-PA competed with rt-PA for inactivation by rPAI-1. In contrast diisopropylphosphate rt-PA (in which the active site serine is chemically modified) showed minimal binding to HUVEC monolayers, as a result of impaired interaction with PAI-1, in the two assays. Thus, both wild-type rt-PA and S478A rt-PA interact with the HUVEC monolayer through PAI-1. With rt-PA this results in the formation of covalent rt-PA.PAI-1 complexes that are released from the monolayer into the supernatant. With S478A rt-PA this results in the formation of noncovalent complexes that remain associated with the HUVEC monolayer, thereby identifying a large pool of reactive PAI-1 molecules in the monolayer.
URI: 
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory for Pharmaceutical Biology (-)
Molecular and Vascular Biology
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy

 




All items in Lirias are protected by copyright, with all rights reserved.

© Web of science