Title: Synthesis of large area carbon nanosheets for energy storage applications
Authors: Cott, Daire J ×
Verheijen, Maarten
Richard, Olivier
Radu, Iuliana
De Gendt, Stefan
van Elshocht, Sven
Vereecken, Philippe #
Issue Date: 2013
Publisher: Pergamon Press
Series Title: Carbon vol:58 pages:59-65
Abstract: We report the large area growth of highly conductive carbon nanosheets (CNS) composed of few layer graphene on 200mm diameter Si substrates using conventional radio frequency plasma-enhanced chemical vapour deposition. Raman spectroscopy is used to characterise the evolution of the CNS nucleation and growth with time in conjunction with TEM revealing the nano-sized graphene-like nature of these films and the intimate contact to the substrate. An individual sheet can have edges as thin as 3 graphene layers. The influence of the growth support layer is also discussed as film growth is compared on titanium nitride (TiN)and directly on Si. Electrochemical cyclic voltammogram (CV) measurements reveal these layers to form an excellent electrical contact to the underlying substrate with excellent stability towards oxidation whilst having a large electrochemical surface area. The resistance of a 150 nm film was measured to be as low as 20 lohm cm. The high percentage of narrow few layer graphene edge sites exposed allows for faster electrochemical reaction rates compared to carbon nanotubes (CNTs) and other electrode materials (glassy carbon and Pt).
ISSN: 0008-6223
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular Design and Synthesis
Centre for Surface Chemistry and Catalysis
Semiconductor Physics Section
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science