Title: Social network analysis for customer churn prediction
Authors: Verbeke, Wouter # ×
Martens, David
Baesens, Bart #
Issue Date: Jan-2014
Publisher: Elsevier Science, B.V.
Series Title: Applied Soft Computing vol:14 pages:341-446
Abstract: This study examines the use of social network information for customer churn prediction. An alternative modeling approach using relational learning algorithms is developed to incorporate social network effects within a customer churn prediction setting, in order to handle large scale networks, a time dependent class label, and a skewed class distribution. An innovative approach to incorporate non-Markovian network effects within relational classifiers and a novel parallel modeling setup to combine a relational and non-relational classification model are introduced. The results of two real life case studies on large scale telco data sets are presented, containing both networked (call detail records) and non-networked (customer related) information about millions of subscribers. A significant impact of social network effects, including non-Markovian effects, on the performance of a customer churn prediction model is found, and the parallel model setup is shown to boost the profits generated by a retention campaign.
ISSN: 1568-4946
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Management Informatics (LIRIS), Leuven
× corresponding author
# (joint) last author

Files in This Item:
File Description Status SizeFormat
SocialNetwork.pdf Published 2330KbAdobe PDFView/Open Request a copy

These files are only available to some KU Leuven Association staff members


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science